
Final project Statistical Learning: red and white wines datasets

Introduction
In [1]: # Useful libraries


import pandas as pd

import seaborn as sns

import matplotlib as mpl

import matplotlib.pyplot as plt

import math

import numpy as np

from scipy.stats import norm

from IPython.core.display import HTML


In [149]: # Import of data from csv files

wqw = pd.read_csv("winequality-white.csv",sep=";")

wqr = pd.read_csv("winequality-red.csv",sep=";")

display(HTML("Let's have a first glance at  each dataset (one for red wine and one for white 
wine):"))

display(HTML("<h3 style='text-align: center;'>Red wine<br></h3>"),wqr.head(), HTML("<h3 styl
e='text-align: center;'>White wine<br></h3>"), wqw.head())


In [3]: display(HTML("The given dataset is composed of two sub-datasets: one for red wine and one wh
ite wine. The white wine one is composed of {} rows and the red wine one of {} rows.".format
(len(wqw.index), len(wqr.index))

    +"<br>They both have the same columns (features): <br><br>{}.".format((wqr.columns[:].t

olist()))

    +"<br><br>The inputs include objective tests (e.g. PH values) and the output is based o

n sensory data (median of at least 3 evaluations made by wine experts).<br>Each expert grade
d the wine quality between 0 (very bad) and 10 (very excellent). It corresponds to the last
column of the previously displayed data."))


Question we wish to address:

We suppose we are a mass distribution brand - like Carrefour - and that our main goal is to select wines amongst our
suppliers' proposals. We wish to propose qualitative wines to our clients, so we would like to select the best wines. We do
not have any wine experts in our staff so we wish to objectify wine quality based on objective data. For a given wine,
the goal is thus to analyze its characteristics and based on it assign it a quality score (0-10). Therefore we wish to predict
wine quality depending on its characteristics. We would also like to give some guidelines to our suppliers in order to make
better wines.

Document structure

The document is structured in the following way:

Introduction
1. Exploratory analysis

1.1. Comparison of datasets statistics: can we merge both datasets ?
1.2. First dataset analysis: a study of correlation between features

2. Classification and prediction task: can we predict wine quality based on its objective characteristics ?
2.1. Classification and prediction with kNN
2.2. Classification and prediction with QDA

3. Classification and prediction: can we predict wine quality with only two classes ?
4. Regression methods: can we give any guidelines to our suppliers to produce better wines ?

4.1. White wine regressions on density
4.2. Red wine regressions on volatile acidity

5. Further possible developments
Conclusion

1. Exploratory analysis

1.1 Comparison of datasets statistics

Data has been splitted in two separate datasets. Before going further in our analysis we wish to analyze if there seems to be
a reason for such a choice. As the first step we would like to study the statistics of each features of the datasets and
compare them. Hereafter, a comparison of each feature's statistics for white and red wine.

In [4]: def stat_comparison(d, indent=0):

   for key, value in d.items():

       print('\t' * indent + str(key)+":")

       if isinstance(value, dict):

           stat_comparison(value, indent+1)

       else:

           print('\t' * (indent+1) + str(value))


stat_comp = {}

for c in wqr.columns:

   stat_comp[c]= {

           'mean' :{'red': wqr[c].mean(),

                    'white' : wqw[c].mean()},

           'median' : {'red' : wqr[c].median(),

                      'white' : wqw[c].median()},

           'std' : {'red' : wqr[c].std(),

                   'white' : wqw[c].std()}}


stat_comparison(stat_comp)


Statistics seem to be quite different from one dataset to the other so we better explore them separately. We deem this
qualitative approach sufficient here - given the obvious discrepencies between datasets.

1.2 First analysis of the dataset: correlation between features

We wish to analyze correlation between features to detect interdependent features. In order to do so we first plot of each
pairwise density and the compute correlation matrices to search for correlated features.

1.2.1 Scatter plots

Hereafter, the scatter plots allowing to visually see correlation between features and - on the diagonal - features' density
estimation by kernel density estimation.

In [5]: from pandas.plotting import scatter_matrix

spw = scatter_matrix(

   wqw,

   figsize  = [20, 20],

   marker   = "o",

   s        = 5,

   diagonal = "kde"


)


for ax in spw.ravel():

   ax.set_xlabel(ax.get_xlabel(), fontsize = 10, rotation = 90)

   ax.set_ylabel(ax.get_ylabel(), fontsize = 10, rotation = 90)


display(HTML("<h3 style='text-align: center;'>White wine scatter plots</h3>"))

plt.show()


In [10]: spr = scatter_matrix(

   wqr,

   figsize  = [20, 20],

   marker   = "o",

   s        = 5,

   diagonal = "kde"


)


for ax in spr.ravel():

   ax.set_xlabel(ax.get_xlabel(), fontsize = 10, rotation = 90)

   ax.set_ylabel(ax.get_ylabel(), fontsize = 10, rotation = 90)


display(HTML("<h3 style='text-align: center;'>Red wine scatter plots</h3>"))

plt.show()


For white wine we can observe that there seems to be a positive correlation between the following features:

residual sugar and density
density and fixed acidity
free sulfure dioxide and total sulfure dioxide

and a negative correlation between:

density and alcohol

For red wine we can observe that there seems to be a positive correlation between the following features:

fixed acidity and citric acid
fixed acidity and density
free sulfure dioxide and total sulfure dioxide

and a negative correlation between:

fixed acidity and pH
cictric acid and volatile acidity
citric acid and pH
density and alcohol

1.2.2 Correlation matrices

To complete the previous visual interpretation we also computed correlation matrices to quantify the degree of dependence
between variables.

In [23]: Cor = wqw.corr()
ones = np.ones(Cor.shape)

msk1 = np.triu(ones.astype(bool))


with sns.axes_style("white"):

   fg1, x1 = plt.subplots(figsize=(14, 14))

   sns.heatmap(Cor, cmap="coolwarm", mask=msk1, center=0, square=True, annot=True, linewidt

hs=0.5, fmt=".2f", cbar_kws={"shrink": .5})

plt.title("White wine correlation matrix", fontsize=20)

plt.show()


For white wine, we can infer from the correlation matrix above that there appears to be a strong positive association
between 'density' and 'residual sugar' (0.84). For white wine, this may be the direct result of a causal relationship between
sugar content and wine density.There are also moderate positive correlations between 'total sulfur dioxide' and 'free sulfur
dioxide' (0.62), and 'total sulfur dioxide' and 'density' (0.53).

Furthermore, we note that there is a strong negative association between 'density' and 'alcohol'. We may surmise that for
white wine, there may exist a (negative) causal relationship between alcohol content and wine density.

In [24]: Cor = wqr.corr()
ones = np.ones(Cor.shape)

msk1 = np.triu(ones.astype(bool))


with sns.axes_style("white"):

   fg1, x1 = plt.subplots(figsize=(14, 14))

   sns.heatmap(Cor, cmap="coolwarm", mask=msk1, center=0, square=True, annot=True, linewidt

hs=0.5, fmt=".2f", cbar_kws={"shrink": .5})

plt.title("Red wine correlation matrix", fontsize=20)

plt.show()


For red wine, we can infer from the correlation matrix below that there appears to be a moderate positive association
between 'citric acid' and 'fixed acidity' (0.67), 'density' and 'fixed acidity' (0.67), 'total sulfure dioxyde' and 'free sulfure
dioxide' (0.67).
There is also a moderate negative association between 'pH' and 'fixed acidity' (-0.68), 'citric acid' and 'pH'
(-0.54), and 'density' and 'alcohol' (-0.50).

Perhaps surpisingly, we note that there appears to be moderately negative associations between 'citric acid' and 'volatile
acidity' (-0.55). This seems to be counter-intuitive as one would expect positive associations between them.

2. Classification task

The idea of this section is to try and predict wine quality based on its components, the idea being that with a given
composition we would be able to predict wine quality. We will use three different prediction methods based on :

kNN
QDA

We decided to apply the methods to the same datasets (splitted the same way). We chose not to use any random shuffling
and set the size of the training set to be 80% of the data. It seems to be a frequent rule of thumb based on Pareto principle.

2.1 Classification and prediction with kNN classifier

The main parameter in kNN classifier - as its name suggests - is the k parameter. To select it we used an experimental
procedure by trying to minimize the error rate as well as maximizing the accuracy. For each wine we plot the resulting
graphs and select k graphically.

We proceeded the following way to choose the k-value:


We first splitted the dataset in two subsests: one for training and one for testing (without randomness in a deterministic
way)
We resplitted with a shuffle the training set to obtain again two subsets one for training and one for testing k-values and
avoid testing it on real labels we wish to predict after
We did the previous 10 times and averaged the error rate and accuracy and plotted the averaged values
Based on this graphs we selected the k-value

2.1.1 Choice of the value of k

In [88]: from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.neighbors import KNeighborsClassifier

from sklearn import metrics


# X is the features and y the labels we want to predict

X = pd.DataFrame(wqw.iloc[:,:-1], columns=wqw.columns[:-1])

y = wqw['quality']

# Dataset split between training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)


error_rate = [0]*99

acc = [0]*99


for j in range(1,10):

   # Re-split training set to define k-value based on results on subset of training set

   X_train2, X_test2, y_train2, y_test2 = train_test_split(X_train, y_train, test_size=0.20

, shuffle=True)

   # Scaling

   scaler = StandardScaler()

   scaler.fit(X_train2)

   X_train2 = scaler.transform(X_train2)
   X_test2 = scaler.transform(X_test2)

   for i in range(1,100):

       knn = KNeighborsClassifier(n_neighbors=i)

       knn.fit(X_train2, y_train2)

       pred = knn.predict(X_test2)

       error_rate[i-1]+=(np.mean(pred != y_test2))

       acc[i-1]+=metrics.accuracy_score(y_test2, pred)


err = [error / 10 for error in error_rate]

accur = [accuracy / 10 for accuracy in acc]

# Error rate plot

plt.figure(figsize=(15,10))

plt.title("White wine: Error rate vs. K Value", fontsize=20)

plt.xlabel("Value of k")

plt.ylabel("Error rate")

plt.plot(range(1,100),err, color='blue', linestyle='dashed', marker='o', markerfacecolor='re
d', markersize=10)

plt.show()

# Accuracy plot

plt.figure(figsize=(15,10))

plt.plot(range(1,100),accur,color = 'blue',linestyle='dashed', 

        marker='o',markerfacecolor='red', markersize=10)


plt.title('White wine: Accuracy vs. K Value', fontsize=20)

plt.xlabel('K')

plt.ylabel('Accuracy')

plt.show()


As a graphical ideal value for white wine we select k=28

In [89]: # X is the features and y the labels we want to predict

X = pd.DataFrame(wqr.iloc[:,:-1], columns=wqr.columns[:-1])

y = wqr['quality']

# Dataset split between training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)


error_rate = [0]*69

acc = [0]*69


for j in range(1,10):

   # Re-split training set to define k-value based on results on subset of training set

   X_train2, X_test2, y_train2, y_test2 = train_test_split(X_train, y_train, test_size=0.20

, shuffle=True)

   # Scaling

   scaler = StandardScaler()

   scaler.fit(X_train2)

   X_train2 = scaler.transform(X_train2)
   X_test2 = scaler.transform(X_test2)

   for i in range(1,70):

       knn = KNeighborsClassifier(n_neighbors=i)

       knn.fit(X_train2, y_train2)

       pred = knn.predict(X_test2)

       error_rate[i-1]+=(np.mean(pred != y_test2))

       acc[i-1]+=metrics.accuracy_score(y_test2, pred)


err = [error / 10 for error in error_rate]

accur = [accuracy / 10 for accuracy in acc]


# Error rate plot

plt.figure(figsize=(15,10))

plt.title("Red wine: Error rate vs. K Value", fontsize=25)

plt.xlabel("Value of k")

plt.ylabel("Error rate")

plt.plot(range(1,70),err, color='blue', linestyle='dashed', marker='o', markerfacecolor='re
d', markersize=10)

plt.show()

# Accuracy plot

plt.figure(figsize=(15,10))

plt.plot(range(1,70),accur,color = 'blue',linestyle='dashed', 

        marker='o',markerfacecolor='red', markersize=10)


plt.title('Red wine: Accuracy vs. K Value', fontsize=25)

plt.xlabel('K')

plt.ylabel('Accuracy')

plt.show()


As a graphical ideal value for red wine we select k=14

2.1.2 Prediction on test set

In [92]: from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay


# X is the features and y the labels we want to predict

X = pd.DataFrame(wqw.iloc[:,:-1], columns=wqw.columns[:-1])

y = wqw['quality']

# Dataset split between training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)

# Scaling

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

# kNN with k=61

classifier = KNeighborsClassifier(n_neighbors=28)

classifier.fit(X_train, y_train)

# Prediction

y_pred = classifier.predict(X_test)

# Confusion matrix

ConfM = confusion_matrix(y_test, y_pred)


display(HTML("<h3 style='text-align: center;'>White wine confusion matrix: </h3><br>"))

cm_display = ConfusionMatrixDisplay(ConfM,display_labels=[3,4,5,6,7,8]).plot()

plt.show()

display(HTML("<h3 style='text-align: center;'>White wine classification report: </h3><br>"))

print(classification_report(y_test, y_pred, zero_division=0))

Here we can see that the prediction has a 53% accuracy score which is a pretty bad score.



To assess how good the model performed we are going to focus on f-1 score which is the harmonic mean of precision and
recall. It gives thus, at the same time, information on both parameters.



The f-1 score allows us to see that in the class of grade 6 we reach a f-1 score of 61% (but the support of this grade
represents 53% of the total support). So our prediction is just above what would have been done with only the most basic
model using previous repartition in the different classes. As we go on adjacent classes (7 and 5) the f-1 score decreases to
41% and 52% respectively. This could be explained by the relatively smallest amount of observations in these classes in the
training set. Moreover, for the other classes none of the new observations have been guessed correctly by the model.

In [93]: # X is the features and y the labels we want to predict

X = pd.DataFrame(wqr.iloc[:,:-1], columns=wqr.columns[:-1])

y = wqr['quality']

# Dataset split between training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)

# Scaling

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

# kNN with k=61

classifier = KNeighborsClassifier(n_neighbors=14)

classifier.fit(X_train, y_train)

# Prediction

y_pred = classifier.predict(X_test)

# Confusion matrix

ConfM = confusion_matrix(y_test, y_pred)


display(HTML("<h3 style='text-align: center;'>Red wine confusion matrix: </h3><br>"))

cm_display = ConfusionMatrixDisplay(ConfM,display_labels=[3,4,5,6,7,8]).plot()

plt.show()

display(HTML("<h3 style='text-align: center;'>Red wine classification report: </h3><br>"))

print(classification_report(y_test, y_pred, zero_division=0))

Here we can see that the prediction has a 57% accuracy score which is still a pretty bad score.



To assess how good the model performed we are going to focus on f-1 score which is the harmonic mean of precision and
recall. It gives thus, at the same time, information on both parameters.



The f-1 score allows us to see that in the class of grade 6 we reach a f-1 score of 61% which is better than previoulsy but
might be explained by the fact the the observations are more spread over class 5 and 6. Interestingly, the model performed
quite good on the class 5 too with a f-1 score of 61%. As we go to the class 7 the f-1 score decreases to 33%. Moreover, for
the other classes none of the new observations have been guessed correctly by the model.

To conclude on these results, the look pretty bad on both datasets, which could be explained by the relative concetration of
observations within the the central classes. There are few obesrvations in the extreme classes which exlpains why the macro
average f-1 score are so bad in both datasets (27% for white wine and 26% for red wine). Three possible thing came to our
mind to overcome this problem:


Rebalance observations to have a better distribution over classes
Try another classification and prediction method
Reduce the number of classes by grouping some classes

As a start we will try another classification and prediction method.

2.2 QDA

In this section we will try to reproduce the classification and prediction with the Quadratic Discriminant Analysis (QDA)

2.2.1 Prediction with QDA

In [94]: from warnings import simplefilter

# ignore all future warnings

simplefilter(action='ignore', category=(FutureWarning, UserWarning))

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

from sklearn.metrics import ConfusionMatrixDisplay


# White wine

# X is the features and y the labels we want to predict

X = pd.DataFrame(wqw.iloc[:,:-1], columns=wqw.columns[:-1])

y = wqw['quality']

# Dataset split between training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)

# Scaling

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)


classifier = QuadraticDiscriminantAnalysis()

classifier.fit(X_train, y_train)

y_pred = classifier.predict( X_test )


ConfM = confusion_matrix(y_test,y_pred)


display(HTML("<h3 style='text-align: center;'>White wine confusion matrix: </h3><br>"))

cm_display = ConfusionMatrixDisplay(ConfM, display_labels=[3,4,5,6,7,8]).plot()

plt.show()

display(HTML("<h3 style='text-align: center;'>White wine classification report: </h3><br>"))

print(classification_report(y_test, y_pred, zero_division=0))

In [95]: # ignore all future warnings

simplefilter(action='ignore', category=(FutureWarning, UserWarning))


# Red wine

# X is the features and y the labels we want to predict

X = pd.DataFrame(wqr.iloc[:,:-1], columns=wqr.columns[:-1])

y = wqr['quality']

# Dataset split between training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)

# Scaling

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)


classifier = QuadraticDiscriminantAnalysis()

classifier.fit(X_train, y_train)

y_pred = classifier.predict( X_test )


ConfM = confusion_matrix(y_test,y_pred)


display(HTML("<h3 style='text-align: center;'>Red wine confusion matrix: </h3><br>"))

cm_display = ConfusionMatrixDisplay(ConfM, display_labels=[3,4,5,6,7,8]).plot()

plt.show()

display(HTML("<h3 style='text-align: center;'>Red wine classification report: </h3><br>"))

print(classification_report(y_test, y_pred, zero_division=0))

As previously the results are quite bad, so we will not comment further and we decided to go for the last proposition listed
above: try to reduce the number of classes to see if we can better predict.

3. Classification with less classes with kNN

As we are a mass distribution company, our goal is to provide our clients with good wines - but with a large enough variety of
wines. So we decided that we do not want to keep 'bad' wines with a quality score below 6. We wish to discriminate only
the wines that have a quality score below 6. This choice of keeping all wines with quality score equal or above 6 is based on
the fact that usually the better the wine, the more expensive it is. And as a distribution company we have to propose affordable
wines: so we decided to segregate datasets above and below 6.

In [99]: def under6(x):

   if x<6:

       return 0

   else:

       return 1


wqw2 = wqw.copy()

wqw2['quality']=wqw2['quality'].apply(under6)

wqr2 = wqr.copy()

wqr2['quality']=wqr2['quality'].apply(under6)


3.1 Choice of the value of k

In [100]: # X is the features and y the labels we want to predict

X = pd.DataFrame(wqw2.iloc[:,:-1], columns=wqw2.columns[:-1])

y = wqw2['quality']

# Dataset split between training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)


error_rate = [0]*99

acc = [0]*99


for j in range(1,10):

   # Re-split training set to define k-value based on results on subset of training set

   X_train2, X_test2, y_train2, y_test2 = train_test_split(X_train, y_train, test_size=0.20

, shuffle=True)

   # Scaling

   scaler = StandardScaler()

   scaler.fit(X_train2)

   X_train2 = scaler.transform(X_train2)
   X_test2 = scaler.transform(X_test2)

   for i in range(1,100):

       knn = KNeighborsClassifier(n_neighbors=i)

       knn.fit(X_train2, y_train2)

       pred = knn.predict(X_test2)

       error_rate[i-1]+=(np.mean(pred != y_test2))

       acc[i-1]+=metrics.accuracy_score(y_test2, pred)


err = [error / 10 for error in error_rate]

accur = [accuracy / 10 for accuracy in acc]


# Error rate plot

plt.figure(figsize=(15,10))

plt.title("White wine: Error rate vs. K Value", fontsize=20)

plt.xlabel("Value of k")

plt.ylabel("Error rate")

plt.plot(range(1,100),err, color='blue', linestyle='dashed', marker='o', markerfacecolor='re
d', markersize=10)

plt.show()

# Accuracy plot

plt.figure(figsize=(15,10))

plt.plot(range(1,100),accur,color = 'blue',linestyle='dashed', 

        marker='o',markerfacecolor='red', markersize=10)


plt.title('White wine: Accuracy vs. K Value', fontsize=20)

plt.xlabel('K')

plt.ylabel('Accuracy')

plt.show()


As a graphical ideal value for white wine we select k=20

In [101]: # X is the features and y the labels we want to predict

X = pd.DataFrame(wqr2.iloc[:,:-1], columns=wqr2.columns[:-1])

y = wqr2['quality']

# Dataset split between training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)


error_rate = [0]*69

acc = [0]*69


for j in range(1,10):

   # Re-split training set to define k-value based on results on subset of training set

   X_train2, X_test2, y_train2, y_test2 = train_test_split(X_train, y_train, test_size=0.20

, shuffle=True)

   # Scaling

   scaler = StandardScaler()

   scaler.fit(X_train2)

   X_train2 = scaler.transform(X_train2)
   X_test2 = scaler.transform(X_test2)

   for i in range(1,70):

       knn = KNeighborsClassifier(n_neighbors=i)

       knn.fit(X_train2, y_train2)

       pred = knn.predict(X_test2)

       error_rate[i-1]+=(np.mean(pred != y_test2))

       acc[i-1]+=metrics.accuracy_score(y_test2, pred)


err = [error / 10 for error in error_rate]

accur = [accuracy / 10 for accuracy in acc]


# Error rate plot

plt.figure(figsize=(15,10))

plt.title("Red wine: Error rate vs. K Value", fontsize=20)

plt.xlabel("Value of k")

plt.ylabel("Error rate")

plt.plot(range(1,70),err, color='blue', linestyle='dashed', marker='o', markerfacecolor='re
d', markersize=10)

plt.show()

# Accuracy plot

plt.figure(figsize=(15,10))

plt.plot(range(1,70),accur,color = 'blue',linestyle='dashed', 

        marker='o',markerfacecolor='red', markersize=10)


plt.title('Red wine: Accuracy vs. K Value', fontsize=20)

plt.xlabel('K')

plt.ylabel('Accuracy')

plt.show()


As a graphical ideal value for red wine we select k=40

3.2 Prediction results

In [102]: from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay


# X is the features and y the labels we want to predict

X = pd.DataFrame(wqw2.iloc[:,:-1], columns=wqw2.columns[:-1])

y = wqw2['quality']

# Dataset split between training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)

# Scaling

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

# kNN with k=20

classifier = KNeighborsClassifier(n_neighbors=20)

classifier.fit(X_train, y_train)

# Prediction

y_pred = classifier.predict(X_test)

# Confusion matrix

ConfM = confusion_matrix(y_test, y_pred)


display(HTML("<h3 style='text-align: center;'>White wine confusion matrix: </h3><br>"))

cm_display = ConfusionMatrixDisplay(ConfM,display_labels=[0,1]).plot()

plt.show()

display(HTML("<h3 style='text-align: center;'>White wine classification report: </h3><br>"))

print(classification_report(y_test, y_pred, zero_division=0))

We can directly see that performances are better than before in terms of accuracy with a global accuracy score of 79%.
We can see that our prediction recall is around 90% on good wines (1) and around 51% on bad ones (0). This means
that we better classify good wines. This could be explained by the unbalanced repartition in both classes (in the training set).
We can see a huge difference in terms of recall and f-1 scores between classes. This issue could - potentially - be solved by
adding new observations to the datasets (missing extreme values). Given that good wines support represents 70% of the
testing dataset we did quite good on that class (with a f-1 score at 86%). The overall macro f-1 score is quite convincing. It is
due to a better repartition between the classes - there are no classes with few observations and bad prediction that reduce the
score. To summarize, reducing the number of classes by creating two new classes seems to have improved drastically our
performance. We might finally be able to predict wine quality !

In [103]: # X is the features and y the labels we want to predict

X = pd.DataFrame(wqr2.iloc[:,:-1], columns=wqr2.columns[:-1])

y = wqr2['quality']

# Dataset split between training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)

# Scaling

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

# kNN with k=40

classifier = KNeighborsClassifier(n_neighbors=40)

classifier.fit(X_train, y_train)

# Prediction

y_pred = classifier.predict(X_test)

# Confusion matrix

ConfM = confusion_matrix(y_test, y_pred)


display(HTML("<h3 style='text-align: center;'>Red wine confusion matrix: </h3><br>"))

cm_display = ConfusionMatrixDisplay(ConfM,display_labels=[0,1]).plot()

plt.show()

display(HTML("<h3 style='text-align: center;'>Red wine classification report: </h3><br>"))

print(classification_report(y_test, y_pred, zero_division=0))

We can directly see that performances are better than before in terms of accuracy with a global accuracy score of 68%. We
can see that our prediction recall is around 80% on good wines (1) and around 57% on bad ones (0). This means that
we better classify good wines. This could be explained by the unbalanced repartition in both classes (in the training set). We
can see a huge difference in terms of recall and f-1 scores between classes. This issue could - potentially - be solved by
adding new observations to the datasets (missing extreme values). Especially for red wine where the number of observations
is really small. Given that good wines support represents 50% of the testing dataset we did quite good on that class (with a f-1
score at 72%). The overall macro f-1 score is not really convincing. Thus on red wine the results are not really convincing.
Maybe some additional work could be done. We will discuss that on the last section of the document.

4. Qualitative insights using regression methods

In our study we achieved to get decent results on quality prediction. But it comes at a price - interpretability. Indeed despite
being able to predict wine quality based on its composition we have no insights on what makes a wine good. To do so we
decided to focus on two features: density for white wine and volatile acidity for red wine.

As seen above, for white wine, we observed a negative correlaiton between the quality and the density. For red wine, we
observed a negative correlation between the quality and the volatile acidity. Therefore we decided to find the main
determinants of those two variables to be able "to reduce them" and improve quality of wines.

The goal for a distributor like us is to provide our suppliers with insights on how to make their wines better.

We decided to use the following methods to obtain coefficients impacting each parameters:


Mulitple Linear Regression
Ridge Regression

4.1 White wine - Density

Let's first start with a Mulitple Linear Regression:

In [120]: from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LinearRegression


# X is the features and y the labels we want to predict

X = pd.DataFrame(wqw.loc[:,(wqw.columns != 'density') & (wqw.columns != 'quality') ])

col = X.columns

y = wqw['density']

# Dataset split between training and testing

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)

# Scaling

scaler = StandardScaler()

scaler.fit(x_train)

x_train = pd.DataFrame(scaler.transform(x_train), columns = col)

x_test = pd.DataFrame(scaler.transform(x_test), columns = col)

# MULTIPLE LINEAR REGRESSION - WW/Density

lreg = LinearRegression()

lreg.fit(x_train, y_train)



# Generate Prediction on test set

lreg_y_pred = lreg.predict(x_test)



# calculating Mean Squared Error (mse)

mean_squared_error = np.mean((lreg_y_pred - y_test)**2)

print("Mean squared Error on test set : ", mean_squared_error)



# Putting together the coefficient and their corresponding variable names

lreg_coefficient = pd.DataFrame()

lreg_coefficient["Columns"] = x_train.columns

lreg_coefficient['Coefficient Estimate'] = pd.Series(lreg.coef_)

print("Regression coefficient are: ")

print(lreg_coefficient)


# plotting the coefficient score

fig, ax = plt.subplots(figsize =(20, 10))



color =['tab:gray', 'tab:blue', 'tab:orange',

'tab:green', 'tab:red', 'tab:purple', 'tab:brown',

'tab:pink', 'tab:purple', 'tab:olive']



ax.bar(lreg_coefficient["Columns"],

lreg_coefficient['Coefficient Estimate'],

color = color)

 


plt.style.use('ggplot')

plt.show()


We will also test results for a Ridge regression.


Note on alpha choice for ridge regression: we chose alpha value by cross validation on alpha value testing for 10 value
(0.1 to 1 by 0.1 step). Hereafter, the cross-validation process.

In [137]: # Choice of best alpha by cross validation

from sklearn.linear_model import RidgeCV

# X is the features and y the labels we want to predict

X = pd.DataFrame(wqw.loc[:,(wqw.columns != 'density') & (wqw.columns != 'quality') ])

col = X.columns

y = wqw['density']

# Dataset split between training and testing

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)

# Scaling

scaler = StandardScaler()

scaler.fit(x_train)

x_train = pd.DataFrame(scaler.transform(x_train), columns = col)

x_test = pd.DataFrame(scaler.transform(x_test), columns = col)


# Cross validation on alpha values

regr_cv = RidgeCV(alphas=np.linspace(0.1,1,10))

# Fitting

model_cv = regr_cv.fit(X_test, y_test)

display(HTML(f"The ideal value for alpha is thus: {model_cv.alpha_}"))


In [138]: # RIDGE REGRESSION - WW/Density

from sklearn.linear_model import Ridge




# Train the model

ridgeR = Ridge(alpha = 1)

ridgeR.fit(x_train, y_train)

y_pred = ridgeR.predict(x_test)


# calculate mean square error

mean_squared_error_ridge = np.mean((y_pred - y_test)**2)

print("The mean squared error on test set is: ", mean_squared_error_ridge)



# get ridge coefficient and print them

ridge_coefficient = pd.DataFrame()

ridge_coefficient["Columns"]= x_train.columns

ridge_coefficient['Coefficient Estimate'] = pd.Series(ridgeR.coef_)

print("Regression coefficient are: ")

print(ridge_coefficient)


# plotting the coefficient score

fig, ax = plt.subplots(figsize =(20, 10))



color =['tab:gray', 'tab:blue', 'tab:orange',

'tab:green', 'tab:red', 'tab:purple', 'tab:brown',

'tab:pink', 'tab:purple', 'tab:olive']



ax.bar(ridge_coefficient["Columns"],

ridge_coefficient['Coefficient Estimate'],

color = color)

 


plt.style.use('ggplot')

plt.show()


4.2 Red wine - Volatile acidity

Let's start with a Multiple Linear Regression:

In [159]: from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LinearRegression


# X is the features and y the labels we want to predict

X = pd.DataFrame(wqr.loc[:,(wqr.columns != 'volatile acidity') & (wqr.columns != 'quality') 
])

col = X.columns

y = wqr['volatile acidity']

# Dataset split between training and testing

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, 
shuffle=False)

# Scaling

scaler = StandardScaler()

scaler.fit(x_train)

x_train = pd.DataFrame(scaler.transform(x_train), columns = col)

x_test = pd.DataFrame(scaler.transform(x_test), columns = col)

# MULTIPLE LINEAR REGRESSION - RW/Volatile acidity

lreg = LinearRegression()

lreg.fit(x_train, y_train)



# Generate Prediction on test set

lreg_y_pred = lreg.predict(x_test)



# calculating Mean Squared Error (mse)

mean_squared_error = np.mean((lreg_y_pred - y_test)**2)

print("Mean squared Error on test set : ", mean_squared_error)



# Putting together the coefficient and their corresponding variable names

lreg_coefficient = pd.DataFrame()

lreg_coefficient["Columns"] = x_train.columns

lreg_coefficient['Coefficient Estimate'] = pd.Series(lreg.coef_)

print("Regression coefficient are: ")

print(lreg_coefficient)


# plotting the coefficient score

fig, ax = plt.subplots(figsize =(20, 10))



color =['tab:gray', 'tab:blue', 'tab:orange',

'tab:green', 'tab:red', 'tab:purple', 'tab:brown',

'tab:pink', 'tab:purple', 'tab:olive']



ax.bar(lreg_coefficient["Columns"],

lreg_coefficient['Coefficient Estimate'],

color = color)

 


plt.style.use('ggplot')

plt.show()


Now with a Ridge Regression:

In [160]: # RIDGE REGRESSION - RW/Volatile acidity

from sklearn.linear_model import Ridge




# Train the model

ridgeR = Ridge(alpha = 1)

ridgeR.fit(x_train, y_train)

y_pred = ridgeR.predict(x_test)


# calculate mean square error

mean_squared_error_ridge = np.mean((y_pred - y_test)**2)

print("The mean squared error on test set is: ", mean_squared_error_ridge)



# get ridge coefficient and print them

ridge_coefficient = pd.DataFrame()

ridge_coefficient["Columns"]= x_train.columns

ridge_coefficient['Coefficient Estimate'] = pd.Series(ridgeR.coef_)

print("Regression coefficient are: ")

print(ridge_coefficient)


# plotting the coefficient score

fig, ax = plt.subplots(figsize =(20, 10))



color =['tab:gray', 'tab:blue', 'tab:orange',

'tab:green', 'tab:red', 'tab:purple', 'tab:brown',

'tab:pink', 'tab:purple', 'tab:olive']



ax.bar(ridge_coefficient["Columns"],

ridge_coefficient['Coefficient Estimate'],

color = color)

 


plt.style.use('ggplot')

plt.show()


We can observe that both method gave the same coefficients more or less, so both methods seem accurate. Because both
parameters have a negative correlation with wine quality, we wish to minimize them. Nevertheless regarding red wine, due to
a small amount of observations, cross validation for the choice of alpha in the ridge regression didn't work: indicating that
multiple linear regression is more robust in this case.

For white wine, we obtained significant positive coefficients for residual sugar and negative significant coefficients for alcohol.
This suggests that in order to minimize density, one should reduce residual sugar in the wine - which seems coherent.
On the other hand increasing alcohol concentration would decrease wine density and therefore positively impact
wine quality. Those two observations would be our recommandations for our suppliers concerning white wine.

For red wine, we obtained really significant negative coefficients for citric acid - which seems logic once again. But the mean
square error is relatively high on this dataset indicating that the regression didn't work so well. Thus we cannot make
any recommandation to our suppliers concerning red wine.

5. Further possible developments

In order to improve our work, we came up with the following ideas:

Increasing the total number of observations - especially in the red wine dataset
Rebalancing data amongst classes to obtain a more equal repartition by oversampling or generating synthetic data
Enriching our confusion matrix analysis with ROC curves to see graphically model performance for each class
Enrich our datasets with missing features such as the grape type that could be a determinant feature in terms of taste
etc.

Conclusion

To conclude, during this study we uncovered the fact that wine quality prediction was a difficult task based on the datasets we
were provided. The only way for us to obtain some acceptable prediction scores has been to reduce drastically the number of
classes in the dataset to discriminate values below 6 and equal or above. As far as classification and prediction techniques
are concerned kNN classification has performed significantly better than QDA. Nonetheless we couldn't overcome the fact that
the data was unbalanced between classes, and failed to predict correctly red wine quality.

This study allowed us to see how important good data is a must for possible interpretation. Thus we proposed below some
ways to make the dataset, maybe, more meaningful.

In addition to prediction, we tried to give some hints on how to produce better wine based on regression coefficients. This
ended up not being that meaningful because nothing striking appeared.

Let's have a first glance at each dataset (one for red wine and one for white wine):

Red wine


fixed
acidity

volatile
acidity

citric
acid

residual
sugar chlorides free sulfur

dioxide
total sulfur

dioxide density pH sulphates alcohol quality

0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5

1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 5

2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 5

3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 6

4 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5

White wine


fixed
acidity

volatile
acidity

citric
acid

residual
sugar chlorides free sulfur

dioxide
total sulfur

dioxide density pH sulphates alcohol quality

0 7.0 0.27 0.36 20.7 0.045 45.0 170.0 1.0010 3.00 0.45 8.8 6

1 6.3 0.30 0.34 1.6 0.049 14.0 132.0 0.9940 3.30 0.49 9.5 6

2 8.1 0.28 0.40 6.9 0.050 30.0 97.0 0.9951 3.26 0.44 10.1 6

3 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.9956 3.19 0.40 9.9 6

4 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.9956 3.19 0.40 9.9 6

The given dataset is composed of two sub-datasets: one for red wine and one white wine. The white wine one is composed of
4898 rows and the red wine one of 1599 rows.

They both have the same columns (features): 



['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density', 'pH',
'sulphates', 'alcohol', 'quality'].



The inputs include objective tests (e.g. PH values) and the output is based on sensory data (median of at least 3 evaluations
made by wine experts).

Each expert graded the wine quality between 0 (very bad) and 10 (very excellent). It corresponds to the last column of the
previously displayed data.

fixed acidity:

mean:

	 red:

	 	 8.31963727329581

	 white:

	 	 6.854787668436097

median:

	 red:

	 	 7.9

	 white:

	 	 6.8

std:

	 red:

	 	 1.7410963181276953

	 white:

	 	 0.843868227687513


volatile acidity:

mean:

	 red:

	 	 0.5278205128205128

	 white:

	 	 0.27824111882400976

median:

	 red:

	 	 0.52

	 white:

	 	 0.26

std:

	 red:

	 	 0.17905970415353537

	 white:

	 	 0.10079454842486534


citric acid:

mean:

	 red:

	 	 0.2709756097560976

	 white:

	 	 0.33419150673744386

median:

	 red:

	 	 0.26

	 white:

	 	 0.32

std:

	 red:

	 	 0.19480113740531857

	 white:

	 	 0.12101980420298249


residual sugar:

mean:

	 red:

	 	 2.53880550343965

	 white:

	 	 6.391414863209474

median:

	 red:

	 	 2.2

	 white:

	 	 5.2

std:

	 red:

	 	 1.4099280595072798

	 white:

	 	 5.072057784014881


chlorides:

mean:

	 red:

	 	 0.08746654158849279

	 white:

	 	 0.04577235606369946

median:

	 red:

	 	 0.079

	 white:

	 	 0.043

std:

	 red:

	 	 0.0470653020100901

	 white:

	 	 0.021847968093728798


free sulfur dioxide:

mean:

	 red:

	 	 15.874921826141339

	 white:

	 	 35.30808493262556

median:

	 red:

	 	 14.0

	 white:

	 	 34.0

std:

	 red:

	 	 10.460156969809725

	 white:

	 	 17.00713732523259


total sulfur dioxide:

mean:

	 red:

	 	 46.46779237023139

	 white:

	 	 138.36065741118824

median:

	 red:

	 	 38.0

	 white:

	 	 134.0

std:

	 red:

	 	 32.895324478299074

	 white:

	 	 42.49806455414291


density:

mean:

	 red:

	 	 0.9967466791744841

	 white:

	 	 0.9940273764801959

median:

	 red:

	 	 0.99675

	 white:

	 	 0.99374

std:

	 red:

	 	 0.0018873339538425554

	 white:

	 	 0.0029909069169369337


pH:

mean:

	 red:

	 	 3.3111131957473416

	 white:

	 	 3.1882666394446715

median:

	 red:

	 	 3.31

	 white:

	 	 3.18

std:

	 red:

	 	 0.15438646490354277

	 white:

	 	 0.1510005996150668


sulphates:

mean:

	 red:

	 	 0.6581488430268917

	 white:

	 	 0.48984687627603113

median:

	 red:

	 	 0.62

	 white:

	 	 0.47

std:

	 red:

	 	 0.16950697959010996

	 white:

	 	 0.1141258339488323


alcohol:

mean:

	 red:

	 	 10.422983114446529

	 white:

	 	 10.514267047774602

median:

	 red:

	 	 10.2

	 white:

	 	 10.4

std:

	 red:

	 	 1.0656675818473946

	 white:

	 	 1.230620567757318


quality:

mean:

	 red:

	 	 5.6360225140712945

	 white:

	 	 5.87790935075541

median:

	 red:

	 	 6.0

	 white:

	 	 6.0

std:

	 red:

	 	 0.807569439734705

	 white:

	 	 0.8856385749678312


White wine scatter plots

Red wine scatter plots

White wine confusion matrix:



White wine classification report:



             precision    recall  f1-score   support


          3       0.00      0.00      0.00         1

          4       1.00      0.04      0.08        25

          5       0.57      0.48      0.52       266

          6       0.60      0.62      0.61       517

          7       0.35      0.50      0.41       151

          8       0.00      0.00      0.00        20


   accuracy                           0.53       980

  macro avg       0.42      0.27      0.27       980


weighted avg       0.55      0.53      0.53       980


Red wine confusion matrix:



Red wine classification report:



             precision    recall  f1-score   support


          3       0.00      0.00      0.00         5

          4       0.00      0.00      0.00        11

          5       0.65      0.58      0.61       143

          6       0.56      0.68      0.61       136

          7       0.31      0.36      0.33        22

          8       0.00      0.00      0.00         3


   accuracy                           0.57       320

  macro avg       0.25      0.27      0.26       320


weighted avg       0.55      0.57      0.56       320


White wine confusion matrix:



White wine classification report:



             precision    recall  f1-score   support


          3       1.00      1.00      1.00         1

          4       0.40      0.24      0.30        25

          5       0.64      0.62      0.63       266

          6       0.62      0.30      0.40       517

          7       0.29      0.83      0.43       151

          8       0.00      0.00      0.00        20


   accuracy                           0.46       980

  macro avg       0.49      0.50      0.46       980


weighted avg       0.56      0.46      0.46       980


Red wine confusion matrix:



Red wine classification report:



             precision    recall  f1-score   support


          3       0.00      0.00      0.00         5

          4       0.07      0.09      0.08        11

          5       0.67      0.59      0.62       143

          6       0.55      0.64      0.59       136

          7       0.27      0.27      0.27        22

          8       0.00      0.00      0.00         3


   accuracy                           0.56       320

  macro avg       0.26      0.27      0.26       320


weighted avg       0.55      0.56      0.55       320


White wine confusion matrix:



White wine classification report:



             precision    recall  f1-score   support


          0       0.69      0.51      0.59       292

          1       0.81      0.90      0.86       688


   accuracy                           0.79       980

  macro avg       0.75      0.71      0.72       980


weighted avg       0.78      0.79      0.78       980


Red wine confusion matrix:



Red wine classification report:



             precision    recall  f1-score   support


          0       0.73      0.57      0.64       159

          1       0.65      0.80      0.72       161


   accuracy                           0.68       320

  macro avg       0.69      0.68      0.68       320


weighted avg       0.69      0.68      0.68       320


Mean squared Error on test set :  1.7489050338739502e-07

Regression coefficient are: 

               Columns  Coefficient Estimate


0         fixed acidity              0.000655

1      volatile acidity              0.000081

2           citric acid              0.000035

3        residual sugar              0.001910

4             chlorides              0.000114

5   free sulfur dioxide             -0.000130

6  total sulfur dioxide              0.000172

7                    pH              0.000537

8             sulphates              0.000168

9               alcohol             -0.001361


The ideal value for alpha is thus: 1.0

The mean squared error on test set is:  1.7482473585194396e-07

Regression coefficient are: 

               Columns  Coefficient Estimate


0         fixed acidity              0.000654

1      volatile acidity              0.000081

2           citric acid              0.000035

3        residual sugar              0.001910

4             chlorides              0.000114

5   free sulfur dioxide             -0.000130

6  total sulfur dioxide              0.000172

7                    pH              0.000537

8             sulphates              0.000168

9               alcohol             -0.001361


Mean squared Error on test set :  0.019303121595725666

Regression coefficient are: 

               Columns  Coefficient Estimate


0         fixed acidity              0.012215

1           citric acid             -0.126862

2        residual sugar             -0.010255

3             chlorides              0.036644

4   free sulfur dioxide             -0.030863

5  total sulfur dioxide              0.044138

6               density              0.053949

7                    pH             -0.000571

8             sulphates             -0.031975

9               alcohol              0.025329


The mean squared error on test set is:  0.019299706978271592

Regression coefficient are: 

               Columns  Coefficient Estimate


0         fixed acidity              0.012193

1           citric acid             -0.126606

2        residual sugar             -0.010165

3             chlorides              0.036566

4   free sulfur dioxide             -0.030763

5  total sulfur dioxide              0.043980

6               density              0.053743

7                    pH             -0.000488

8             sulphates             -0.031925

9               alcohol              0.025105



